NUSCALE TO SCALE BACK OPERATIONS IN FACE OF UNCERTAINTY REGARDING PRINCIPAL INVESTOR
Thursday, January 20th, 2011Official Press Release Follows:
—
20 January 2011
To Advertise On Our Website Click Here
Posts Tagged ‘NuScale Power’NUSCALE TO SCALE BACK OPERATIONS IN FACE OF UNCERTAINTY REGARDING PRINCIPAL INVESTORThursday, January 20th, 2011Official Press Release Follows: — 20 January 2011 For Immediate Release
Contact: Bruce Landrey
NuScale Power, Inc.
503.715.7900
Investment Firm’s Issues Stall NuScale Power’s Progress
Corvallis, OR – A Securities & Exchange Commission civil action against affiliates of the Michael Kenwood Group, NuScale Power, Inc.’s principal investor, has prevented the firm from meeting fund obligations to NuScale and has forced NuScale to reduce its spending.
Due to the uncertainty surrounding the outcome of these proceedings, NuScale is stopping work on contract activities and taking other precautionary actions pending decisions by the Court hearing the complaint.
The SEC has not made any allegations of improper activities by NuScale, and NuScale is not a party in the SEC action.
NuScale Power is developing an inherently safe, modular, scalable light water reactor technology for use in nuclear power plants. Its standard design is for a power plant that can produce up to 540 megawatts of electricity using 12 NuScale reactor modules. The technology is being widely-embraced by industry and the US Department of Energy. The company currently has operations in Corvallis and Portland, OR, and Richland WA.
“NuScale has made phenomenal progress and achieved tremendous momentum,” said Paul Lorenzini, PhD, president and chief executive officer. “The company has assembled the best talent in the industry and our people have made unbelievable progress developing the technology and working with the US Nuclear Regulatory Commission to secure Federal approval for the design,” he said.
Lorenzini said that since NuScale’s formation in 2007, it has met or exceeded every milestone. “It is tragic that we have been forced to suspend operations and it is a tremendous setback for efforts to bring clean energy systems to the market,” he added.
Lorenzini said NuScale is pursuing alternative financing strategies and hopes the company can resume operations as soon as possible. NuScale has raised approximately $35 million in venture capital to date.
####
—
NUSCALE TO JOIN U.S. COMMERCE DELEGATION FOR INDIA MISSIONMonday, January 17th, 2011Nuclear Townhall NuScale Power’s president Paul Lorenzini will be one of 24 American company representatives on board next month when Secretary of Commerce Gary Locke visits India on a trade mission. Also among the passengers will be officials from GE-Hitachi, the international partnership that is trying to revive GE’s sagging nuclear fortunes. “Exports are leading the U.S. economic recovery, spurring future economic growth and creating jobs in America,” Secretary Locke told The Hill. “The business leaders joining me on this mission see the great potential to sell their goods and services to India, helping drive innovation and create jobs in both countries.” Packing nuclear experts aboard certainly makes sense. Although only a handful of reactors at best will be built in this country over the next decade, Asia is bursting with nuclear construction and India is near the head of the pack. The Subcontinent plans to add 20 new reactors by 2020 and 43 more by 2032. All these are on the order of 1000 megawatts, but NuScale’s 45-megawatt modular reactor has tremendous promise for rural areas in India’s underdeveloped countryside. While France, Japan, Korea and Russia now dominate world construction, the U.S. has at least a glimmer of a chance of gaining leverage in India. The opening occurred when the Bush Administration decided to overlook the Non-Proliferation Treaty and strike a deal with India on nuclear technology in 2006, even though India has still not signed the international agreement. Russia already has a foothold in India, with two Rosatom WER-1000’s scheduled for completion this year. Russia will be supplying the uranium but India will do its own reprocessing, thereby adding to its plutonium stock. Because the long international boycott blocked its access to world uranium, India has also developed a thorium technology that may lead the world in exploiting this alternate source of nuclear fuel. The country also has a small nuclear desalination plant at Kudankulam and is constructing a 500 MW fast breeder reactor at Kalpakkam. In fact, one thing Secretary Locke may discover is that, in terms of the nuclear market, India has as much to sell us as we have to sell them Read more about it at the Hill and the Gazette Times SMALL REACTORS: ONE OF TIME MAGAZINE’S ’20 TOP GREEN TECH IDEAS’ FOR 2010Friday, December 10th, 2010December 10, 2010

In a measure of the growing enthusiasm for downsized nuclear, small modular reactors have been listed as Idea #18 on Time’s “20 Top Green Tech Ideas” of 2010. 
“[T]here’s still a reluctance to build nuclear plants no new one has been constructed in the U.S. in decades and it goes beyond environmental concerns,” says Time, parroting standard anti-nuclear rhetoric. “Nuclear power plants are incredibly expensive investments, and right now few utilities would take on the financial risk of building one, or get banks to lend them the necessary capital, even with additional government aid. But what if you could shrink the size of a nuclear plant? That’s what companies like NuScale Power and Babcock & Wilcox are trying to do. By building a modular plant that might be a quarter the size of a the current multi-gigawatt operations, it’s possible to reduce the capital expenditures needed to start construction and cut the risk that would be associated with an accident. We may at last be approaching a time that nuclear goes nimble.”
 Next to some of the other ideas on Time’s Top 20, SMRs’ credentials seem impressive. The 75-200 MW units being developed by Babcock & Wilcox, NuScale and Hyperion can run a small town of about 20,000 with a basement-sized unit. By contrast, the Solar Tower (idea #7) – which has been tried since the 1980s – can generate 10 MW on five square miles when the sun shines. A new rooftop windmill manufactured by Windtronics (Idea #13) can generate “nearly 3000 KWh a year with decent winds” – about enough electricity to run your VCR. 
Still, it’s great to find nuclear in such rarified company. Read more at Time Magazine NTH Q&A NUSCALE TRAILBLAZER PAUL LORENZINI: SMRS ‘A GAME CHANGING TECHNOLOGY’Thursday, October 28th, 2010Paul Lorenzini has a long career in nuclear, dating back to 1970, when he was the first PhD to graduate from Oregon State with a degree in nuclear engineering. He worked with Rockwell International’s nuclear division where he was involved in developing safety analysis methods for the design of the Liquid Metal Fast Breeder Reactor. He later became a vice president with the company where he oversaw the clean-up operation at Hanford, Washington. From there he went on to serve as president o Pacific Power & Light and then CEO of PacifiCorps’ operations in Turkey and Australia. He also has a law degree. Somewhere along the way, he met Dr. Jose N. Reyes, co-designer of a small, 45-MW modular light-water reactor. Enthusiastic about its potential, he combined with Dr. Reyes to found NuScale, with the mission of commercializing the reactor model. NuScale has made a splash but – like all small reactor start-ups – still find itself stalled trying to get through licensing at the Nuclear Regulatory Commission. After preliminary meetings with the NRC in 2008, NuScale is hoping to apply for complete design certification in 2012 with the first models up and running by 2018. It’s a long time horizon and frustrating is to see competitors in other countries now starting to catch up with the technology. But Lorenzini is still optimistic that NuScale will be one of the first out the door with the new technology. We interviewed him last week.
NUCLEAR TOWNHALL: Tell us how this idea got started. When did you first conceive of the notion that nuclear reactors could be scaled down to small size?
LORENZINI: Actually the idea was first conceived by Dr. Reyes under a contract with the Department of Energy in 2001. At the time a number of small designs were being developed throughout the world with a view to serving developing countries with small grids and meeting needs in remote locations. The unique feature of this design was its reliance on natural circulation cooling, basically transferring knowledge Dr. Reyes had gained through testing on the Westinghouse AP1000 at Oregon State University. When we took the concept to market in 2007, the truly new idea was the notion of clustering several of these “modules” at a single site to serve utility customers with a plant producing up to 540 MWe. NTH: What’s been the reaction in the technological community? Where do you find support? Where do you find opposition? LORENZINI: For years it has been assumed nuclear plants must be large to capture the “economies of scale.” No one believed we could offer a small plant that would be economic. We challenged that idea by arguing there are unique “economies of small” – a new and novel approach to containment design coupled with factory manufacturing of the entire nuclear plant and the simplicity of natural circulation – all of these have combined to give us a plant that is small and economic. What it means for customers is they can build a nuclear plant with significantly reduced financial risks. Frankly, once we get past the economic skeptics, we have found broad support in the technical community. What the technical types seem to like the most is the simplicity and inherent safety advantages that the plant offers. We have been especially encouraged by growing bi-partisan support at the federal level, both from both Houses of Congress and the Administration through Secretary Chu at the Department of Energy. I think over time EPA will appreciate the role light water, small modular reactors can play in addressing the near term need for non-carbon sources of electricity and that Commerce will also see the jobs and export trade implications for creating a domestic manufacturing industryThere is a growing appreciation of the role light water, small modular reactors can play in addressing the near term need for non-carbon sources of electricity.. NTH: Where do you envision these reactors being deployed. Have you had any success in finding customers? LORENZINI: Our plan is to pursue the U.S. market first. We believe Certification by the US Nuclear Regulatory Commission is, in essence, an international “gold stamp” that will automatically open global markets. Ten major utilities have joined our Customer Advisory Board and we are having serious conversations with many of them, as well as others. While we are getting interest from large utilities, the ability to deploy a small, scalable nuclear plant also has attracted interest from many consumer owned utilities like the rural electric cooperatives, which are typically smaller generators. NTH: The field for small modular reactors is now getting a little crowded. What differentiates NuScale from the rest? Is there anything unique about your design? LORENZINI: Aside from the commercial importance of being a light water design, our most significant differentiator is the unique NuScale containment design. Rather than the conventional massive concrete structure built on-site, our containment is much smaller diameter vessel that is manufactured at the factory along with the nuclear component. When the module is shipped, it is delivered as an entire plant, including the containment. This means we can add nuclear “modules” incrementally to meet growing customer demands over time once the reactor building has been erected. In this sense we are the only truly “modular and scalable” design in the market today. As a by-product, the containment design also gives us a very simple and reliable system for decay heat removal since it is entirely below grade and under water. NTH: The big question in everybody’s mind, of course, is whether the Nuclear Regulatory Commission is going to get around to licensing any of these small reactors in the next decade. How do you view your chances there? Were the preliminary talks in 2008 helpful? LORENZINI: We have actually moved things along very well with the Nuclear Regulatory Commission. When we first approached them I believe we were viewed a bit as a curiosity. But that shifted to active interest rather quickly as some of the safety advantages of the plant became apparent and as market interest grew. Since then the NRC has created a special branch for licensing light water PWRs and we now have a project manager assigned especially to us. We have submitted our first Topical Licensing Reports and have been having regular exchanges with the staff. In August, two of the newest Commissioners, Mr. [William C.] Ostendorff and Dr. [George] Apostolakis, visited our test facility in Corvallis. Because of the simplicity of the design, we will be able to avoid many of the complex analyses that complicate the licensing of larger plants. Right now we’re quite optimistic about our prospects for moving through the licensing process in a reasonable time. NTH: How did that experimental model at Oregon State University go? Was that a sufficient test of the technology? Are there any plans anywhere for a full-scale model? LORENZINI: The integral test facility at Oregon State University is a very important asset to us. As a one-third scale, electrically heated, fully integrated test facility operating at temperature and pressure, it models the entire system from the core to the ultimate heat sink. It will allow us to confirm not only the basic operations but also the response of safety systems. We intend to follow an approach very similar to the one taken for licensing and commercializing the Westinghouse AP1000. In that case an electrically heated, fully integrated, sub-scale test facility at Oregon State University served to provide the confirmation necessary to support the design certification of the plant. Given that the basics of NuScale’s nuclear operation and natural circulation are well understood, we believe this facility will provide an adequate basis for licensing and commercialization of the plant. NTH: How does funding go for a project like this? Have the venture capital firms been interested? Are you still privately financed? Are there people willing to invest in an idea or do they want to see a license? LORENZINI: To this point we have been funded entirely by venture investors. However, we have had growing interest from potential strategic partners. The long timeline has made it difficult but that has been offset recently by the enthusiastic response of the market. NTH: What are the possibilities of experimenting or building abroad? Are there any ways you could move ahead without an NRC license? LORENZINI: We are receiving significant international attention and have had several expressions of interest. Many countries have a well developed nuclear regulatory regime and each will need to satisfy their sovereign regulations independently. That said, there are a number of countries interested in NuScale that lack the regulatory process and for them the NRC certification will be more important. In either case, we do not see a shortcut to licensing. While we may find ourselves pursuing opportunities in other countries, our near term emphasis will be on U.S. markets and NRC approvals. NTH: Realistically, it appears that the U.S. is rapidly losing its lead in nuclear technology. Particularly in Asia, other countries are picking up the ball and running with it while we still seem stuck on square zero. Japan, Korea and Russia already have their own small modular designs and seem poised to advance much more rapidly. Are you worried that we’re going to be overtaken in nuclear technology? What would be the consequences of that? LORENZINI: It is discouraging to see other countries moving forward as aggressively as they are while we move much more slowly. In my view it puts an exclamation point on the importance of supporting the commercialization of viable U.S.-based nuclear technologies as they emerge. What we need is a federally backed national initiative to commercialize small modular reactor technologies that could impact the market. As I said earlier, we have been encouraged to believe that view is shared both in Congress and within the Administration NTH: What’s the most unusual thing you’ve encountered in trying to invent and promote small reactor technology? LORENZINI: Not unusual so much, but what has been most surprising is how dramatically the alignment has occurred between the market, our regulators, the Administration, and the bi-partisan Congress. People really get it. They understand the need for flexible new nuclear technologies that can open markets and do so with less financial stress here and around the world. They get the clean air implications and they get the domestic jobs and manufacturing benefits. For this alignment to happen in such a short time has been a very special surprise. And while we still have a long way to go, these changes are creating an environment in which I believe SMR’s can become a game changing technology NTH: Thanks very much for your time. |
|